BMTAR - Bayesian Approach for MTAR Models with Missing Data
Implements parameter estimation using a Bayesian approach
for Multivariate Threshold Autoregressive (MTAR) models with
missing data using Markov Chain Monte Carlo methods. Performs
the simulation of MTAR processes (mtarsim()), estimation of
matrix parameters and the threshold values (mtarns()),
identification of the autoregressive orders using Bayesian
variable selection (mtarstr()), identification of the number of
regimes using Metropolised Carlin and Chib (mtarnumreg()) and
estimate missing data, coefficients and covariance matrices
conditional on the autoregressive orders, the threshold values
and the number of regimes (mtarmissing()). Calderon and Nieto
(2017) <doi:10.1080/03610926.2014.990758>.